5,593 research outputs found

    MINERvA neutrino detector response measured with test beam data

    Get PDF
    The MINERvA collaboration operated a scaled-down replica of the solid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This article reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons are obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4%, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross section measurement program.Comment: as accepted by NIM

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Full text link
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    Utilidad de cinco tejidos para discriminar variantes somáticas y germinales en neoplasias mieloides

    Get PDF
    CO-091 Introducción: Los síndromes hereditarios están adquiriendo una gran importancia en el panorama de las hemopatías malignas. De hecho, la revisión de 2016 de la OMS ha incluido una sección sobre predisposición germinal a neoplasias mieloides (NM). Distinguir entre una neoplasia mieloide de predisposición hereditaria (NMPH) de una NM esporádica es crucial por su impacto en el seguimiento de estos pacientes, así como en el de sus familiares sanos. La generalización de técnicas como la NGS en el estudio inicial de pacientes con NM ha puesto de manifiesto que un porcentaje no desdeñable de pacientes podrían tener variantes de origen germinal. Sin embargo, para su diagnóstico, se precisa de la confirmación de la naturaleza de la variante en un tejido no hematopoyético, sin que exista un consenso sobre el tejido a utilizar. Métodos: Nos propusimos evaluar cinco tejidos (fibroblastos de médula ósea, fibroblastos de piel, folículos pilosos, frotis bucal y células CD3+) en cuanto a su capacidad de discriminar si las variantes sospechosas eran de origen somático o germinal. El estudio se realizó en una cohorte de 299 pacientes a los que en algún momento del curso de la enfermedad se les hizo un panel de NGS Pan-Mieloide (PMP, 48 genes), que incluye 22 genes descritos en la literatura como relacionados con NMPH, incluyendo los recomendados por la OMS (ANKRD26, CEBPA, DDX41, ETV6, GATA2, RUNX1). De los 299 pacientes, 100 portaban variantes en algunos de esos 22 genes, que presentaban una frecuencia alélica (VAF) ~ 50%. Recolectamos un total de 21 muestras de tejidos ..

    Ionization Electron Signal Processing in Single Phase LArTPCs I. Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation

    Full text link
    We describe the concept and procedure of drifted-charge extraction developed in the MicroBooNE experiment, a single-phase liquid argon time projection chamber (LArTPC). This technique converts the raw digitized TPC waveform to the number of ionization electrons passing through a wire plane at a given time. A robust recovery of the number of ionization electrons from both induction and collection anode wire planes will augment the 3D reconstruction, and is particularly important for tomographic reconstruction algorithms. A number of building blocks of the overall procedure are described. The performance of the signal processing is quantitatively evaluated by comparing extracted charge with the true charge through a detailed TPC detector simulation taking into account position-dependent induced current inside a single wire region and across multiple wires. Some areas for further improvement of the performance of the charge extraction procedure are also discussed.Comment: 60 pages, 36 figures. The second part of this work can be found at arXiv:1804.0258

    A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber

    Full text link
    We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction chain for the MicroBooNE detector. We show the first demonstration of a network's validity on real LArTPC data using MicroBooNE collection plane images. The demonstration is performed for stopping muon and a νμ\nu_\mu charged current neutral pion data samples

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs)

    Full text link
    Polymerization of styrenic monomers containing imidazolium subunits in the presence of crosslinking monomers and using ionic liquids (ILs) as porogenic agents provides composite materials with excellent mechanical properties and displaying conductivities that are in the same order of magnitude than those shown by bulk ILs. This approach allows the use of high crosslinking degrees and low IL-loadings without compromising the required properties of the resulting composites. Besides, no appreciable leaching of the bulk IL component is detected.Financial support by Ministerio de Ciencia e Innovacion (CTQ2011-28903-C02-01 and SP-ENE-20120718), Generalitat Valenciana (PROMETEO/2012/020) and Universitat Jaume I (P11B2013-38) is acknowledged.Altava Benito, B.; Compañ Moreno, V.; Andrio Balado, A.; Del Castillo Davila, LF.; Mollá Romano, S.; Burguete, MI.; García-Verdugo Cepeda, E.... (2015). Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs). Polymer. 72:69-81. https://doi.org/10.1016/j.polymer.2015.07.009S69817

    Quantum numbers of the X(3872)X(3872) state and orbital angular momentum in its ρ0Jψ\rho^0 J\psi decay

    Get PDF
    Angular correlations in B+X(3872)K+B^+\to X(3872) K^+ decays, with X(3872)ρ0J/ψX(3872)\to \rho^0 J/\psi, ρ0π+π\rho^0\to\pi^+\pi^- and J/ψμ+μJ/\psi \to\mu^+\mu^-, are used to measure orbital angular momentum contributions and to determine the JPCJ^{PC} value of the X(3872)X(3872) meson. The data correspond to an integrated luminosity of 3.0 fb1^{-1} of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be JPC=1++J^{PC}=1^{++}. The X(3872)X(3872) is found to decay predominantly through S wave and an upper limit of 4%4\% at 95%95\% C.L. is set on the fraction of D wave.Comment: 16 pages, 4 figure

    Observation of two new Ξb\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξb\Xi_b^{\prime -} and Ξb\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξb)m(Ξb0)m(π)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb)m(Ξb0)m(π)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξb)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure
    corecore